3.2.14 \(\int \frac {x^3}{\sqrt {a+b x+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=545 \[ -\frac {b \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 c^{3/2} f}-\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (2 d e f-\left (e^2-d f\right ) \left (\sqrt {e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {e \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f^2}+\frac {\sqrt {a+b x+c x^2}}{c f} \]

________________________________________________________________________________________

Rubi [A]  time = 3.72, antiderivative size = 545, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 6, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6728, 621, 206, 640, 1032, 724} \begin {gather*} -\frac {b \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 c^{3/2} f}-\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (2 d e f-\left (e^2-d f\right ) \left (\sqrt {e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {e \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f^2}+\frac {\sqrt {a+b x+c x^2}}{c f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

Sqrt[a + b*x + c*x^2]/(c*f) - (e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*f^2) - (b*Ar
cTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(2*c^(3/2)*f) - ((2*d*e*f - (e^2 - d*f)*(e - Sqrt[e^2 -
4*d*f]))*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c
*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*f^2*Sqrt[e
^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]) + ((2*d*e*f - (e^2 - d*f)
*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/
(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(S
qrt[2]*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1032

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {x^3}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx &=\int \left (-\frac {e}{f^2 \sqrt {a+b x+c x^2}}+\frac {x}{f \sqrt {a+b x+c x^2}}+\frac {d e+\left (e^2-d f\right ) x}{f^2 \sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {d e+\left (e^2-d f\right ) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{f^2}-\frac {e \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{f^2}+\frac {\int \frac {x}{\sqrt {a+b x+c x^2}} \, dx}{f}\\ &=\frac {\sqrt {a+b x+c x^2}}{c f}-\frac {(2 e) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f^2}-\frac {b \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{2 c f}+\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{f^2 \sqrt {e^2-4 d f}}-\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{f^2 \sqrt {e^2-4 d f}}\\ &=\frac {\sqrt {a+b x+c x^2}}{c f}-\frac {e \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f^2}-\frac {b \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{c f}-\frac {\left (2 \left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^2 \sqrt {e^2-4 d f}}+\frac {\left (2 \left (2 d e f-\left (e^2-d f\right ) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^2 \sqrt {e^2-4 d f}}\\ &=\frac {\sqrt {a+b x+c x^2}}{c f}-\frac {e \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f^2}-\frac {b \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 c^{3/2} f}-\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {\left (2 d e f-\left (e^2-d f\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.20, size = 550, normalized size = 1.01 \begin {gather*} -\frac {\frac {b f \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{c^{3/2}}+\frac {\sqrt {2} \left (-\frac {e \left (e^2-3 d f\right )}{\sqrt {e^2-4 d f}}-d f+e^2\right ) \tanh ^{-1}\left (\frac {4 a f+b \left (\sqrt {e^2-4 d f}-e+2 f x\right )+2 c x \left (\sqrt {e^2-4 d f}-e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f+b \left (\sqrt {e^2-4 d f}-e\right )\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {f \left (2 a f+b \left (\sqrt {e^2-4 d f}-e\right )\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\sqrt {2} \left (e^2 \sqrt {e^2-4 d f}-d f \sqrt {e^2-4 d f}-3 d e f+e^3\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (\sqrt {e^2-4 d f}+e-2 f x\right )-2 c x \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {2 e \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{\sqrt {c}}-\frac {2 f \sqrt {a+x (b+c x)}}{c}}{2 f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-1/2*((-2*f*Sqrt[a + x*(b + c*x)])/c + (2*e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/Sqrt[c] +
(b*f*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/c^(3/2) + (Sqrt[2]*(e^3 - 3*d*e*f + e^2*Sqrt[e^2
- 4*d*f] - d*f*Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f - 2*c*(e + Sqrt[e^2 - 4*d*f])*x - b*(e + Sqrt[e^2 - 4*d*f] -
2*f*x))/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))]*Sqrt[a
+ x*(b + c*x)])])/(Sqrt[e^2 - 4*d*f]*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 -
 4*d*f]))]) + (Sqrt[2]*(e^2 - d*f - (e*(e^2 - 3*d*f))/Sqrt[e^2 - 4*d*f])*ArcTanh[(4*a*f + 2*c*(-e + Sqrt[e^2 -
 4*d*f])*x + b*(-e + Sqrt[e^2 - 4*d*f] + 2*f*x))/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) + f*(2*
a*f + b*(-e + Sqrt[e^2 - 4*d*f]))]*Sqrt[a + x*(b + c*x)])])/Sqrt[c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) + f*(2*
a*f + b*(-e + Sqrt[e^2 - 4*d*f]))])/f^2

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.74, size = 430, normalized size = 0.79 \begin {gather*} -\frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+\text {$\#$1}^2 b e+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e-4 \text {$\#$1} b \sqrt {c} d+a^2 f-a b e+b^2 d\&,\frac {-\text {$\#$1}^2 d f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+\text {$\#$1}^2 e^2 \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+b d e \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} \sqrt {c} d e \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+a d f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-a e^2 \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )}{-2 \text {$\#$1}^3 f+3 \text {$\#$1}^2 \sqrt {c} e+2 \text {$\#$1} a f-\text {$\#$1} b e-4 \text {$\#$1} c d-a \sqrt {c} e+2 b \sqrt {c} d}\&\right ]}{f^2}+\frac {(b f+2 c e) \log \left (-2 c^{3/2} \sqrt {a+b x+c x^2}+b c+2 c^2 x\right )}{2 c^{3/2} f^2}+\frac {\sqrt {a+b x+c x^2}}{c f} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^3/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

Sqrt[a + b*x + c*x^2]/(c*f) + ((2*c*e + b*f)*Log[b*c + 2*c^2*x - 2*c^(3/2)*Sqrt[a + b*x + c*x^2]])/(2*c^(3/2)*
f^2) - RootSum[b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^
2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (b*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*e^2*Log[-(Sqrt[c]*
x) + Sqrt[a + b*x + c*x^2] - #1] + a*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*Sqrt[c]*d*e*Log[-(
Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + e^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 - d*f*Lo
g[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(2*b*Sqrt[c]*d - a*Sqrt[c]*e - 4*c*d*#1 - b*e*#1 + 2*a*f*#1
 + 3*Sqrt[c]*e*#1^2 - 2*f*#1^3) & ]/f^2

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.03, size = 3131, normalized size = 5.74 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x)

[Out]

(c*x^2+b*x+a)^(1/2)/c/f-1/2*b/c^(3/2)/f*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-1/f^2*e*ln((c*x+1/2*b)/c^(
1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)+1/2/f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e
*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/
f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*b*f
+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-
c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c
*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*d-1/2/f^3*2^(1/2)/((-(-4*d*f+e^2
)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*
f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(
1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*
(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2
*(-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^
2)^(1/2))/f))*e^2+3/2/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-
b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^
2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*
b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f
*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2
)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*d*e-1/2/f^3/(-4*d*f+e^2)^(1/2
)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d
*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*
(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*
c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+
(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*b*f+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/
2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*e^3+1/2/f^2*2^(1/2)/(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*
f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c
*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*
b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*
(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2
)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*d-1/2/f^3*2^(1/2)/(((-4*d*f+
e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*b*f-(-4*
d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(
1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(
4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2
*((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^
2)^(1/2))/f))*e^2-3/2/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b
*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)
/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*b*f-(
-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*(c*(-
4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e
+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*d*e+1/2/f^3/(-4*d*f+e^2)^(1/2)*2^
(1/2)/(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2
)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2+(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-
e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e
^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f*(x-1/2*(-e+(-4*d*f+
e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*b*f-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/
2*(-e+(-4*d*f+e^2)^(1/2))/f))*e^3

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more details)Is 4*d*f-e^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^3}{\sqrt {c\,x^2+b\,x+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*x + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(x^3/((a + b*x + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3}}{\sqrt {a + b x + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x**3/(sqrt(a + b*x + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________